An Extraordinary Year

16174583_10154015478720771_7681126045546738551_n

At McMurdo. Our ship, the RVIB Nathaniel B. Palmer, in the background.

Earlier this year, I had the life-changing experience of being the science communicator and outreach ambassador for the SNOWBIRDS Transect research cruise from McMurdo Station, Antarctica, through the wild Southern Ocean.

download

Marine technicians steady the megacorer, which has returned from the sea floor filled with mud.

I constructed and maintained our website and social media, raised public awareness, blogged about our science, was the photographer, mentored and edited graduate students writing guest blog posts, created illustrations, and got my hands wet and dirty whenever an extra hand was needed.

watermuddownload (1)

I’m now writing a book about our high-seas adventure and our fascinating science, which explored the roles of nitrogen and silicon in the success of diatoms, and included growing diatoms, filtering marine snow, and retrieving deep-sea mud cores. (I also have another polar science book underway.)

Mid-year, I traveled to Yellowstone National Park to do research for the illustrations for VOLCANO DREAMS, a non-fiction book for children about the Yellowstone supervolcano by award-winning author Janet Fox.

IMG_0729IMG_0971

I’ve spent the rest of the year completing the illustrations. Volcano Dreams will be published by Web of Life Children’s Books in September, 2018. This is the first time I’ve illustrated a published children’s picture book, something I’ve worked for for years.

In September, I started POLAR BIRD, the next step on my journey as a science communicator, non-fiction writer, and sci-art illustrator.

pbPOLAR BIRD is a labor of love, and I’m grateful to everyone who has liked, shared, retweeted, subscribed, and—most especially—read.

2017 has been truly transformative, and I’ve never felt more like I’m on the right path. More than anything, I dream that my work will lead me back to the ice.

As we head into 2018, I’m actively seeking opportunities to be an embedded team member and offer my experience and diverse skill set on future research cruises, taking the considerable and important work required of Outreach—both before, during, and after an expedition—off scientists’ hands.

While I’d be thrilled to join any research cruise, I’m particularly interested in sea ice dynamics and ecology, polynyas, phtyoplankton, krill, the biological pump and carbon cycle, paleoclimatology, ice shelves and glaciers, sea bird and marine mammal ecology, and more… (I could easily spend the rest of my life writing and illustrating about science in polar regions.)

Thank you for reading! I look forward to bringing you new science adventures, more about our planet’s vital sea and land ice, and new art.

I wish you all a very healthy, peaceful, and happy New Year!

happy

 

 

 

 

In the Belly of the Southern Ocean

IMG_9004 C

Copyright © Marlo Garsnworthy

“Below 40 degrees south there is no law; below 50 degrees south there is no God.”

—An old sailors’ saying

 

Driven by strong westerly winds and unhindered by land to slow its flow, the frigid Southern Ocean races around the coldest, windiest, driest, and most remote landmass on Earth—the vast polar continent of Antarctica.

Capture

Via Google Earth

Between the latitudes of 40 and 50 degrees south is the realm of the “Roaring Forties. ” These powerful winds, first named by sailors who used them for fast passage around the globe, have long been known for their ferocious storms and treacherous seas.

FullSizeRender

Credit: Luke Zeller

South of 50 and 60 degrees respectively are the “Furious Fifties” and “Screaming Sixties,” where these conditions are even stronger.

DSC_0515

Copyright © Marlo Garnsworthy  

Here, a ship’s crew must not only battle waves that can be as high as multi-story buildings but watch vigilantly for icebergs and find safe routes through thick, ever-shifting sea ice that freezes and recedes with the seasons.

DSC_0473

Copyright © Marlo Garnsworthy

Here, even a well-quipped icebreaker—a ship especially designed to navigate ice-covered waters—can be incapacitated far from land or help. And it is here between 67 degrees and 54 degrees south—in the belly of the Screaming Sixties and Furious Fifties—that I spent six weeks aboard an icebreaker and research vessel.

To be continued… 

My journey aboard the RVIB Nathaniel B. Palmer, with researchers from the University of Rhode Island’s Graduate School of Oceanography, the Marine Science Institute of UCSB, and the University of Otago, who studied aspects of diatom production, is the subject of the book I’m currently writing. This journey was funded by the National Science Foundation’s United States Antarctic Program. Special thanks to Dr. Rebecca Robinson for this extraordinary opportunity. 

This Week in Ice: Nov. 5-Nov. 11

DSC_0597

Active volcano Mt. Erebus and the frozen Ross Sea near McMurdo Station, Antarctica.    Copyright © Marlo Garnsworthy

This Week in Ice—Volcanoes!

The most sensational polar news this week was this study by NASA scientists, who say a mantle plume almost as hot as the Yellowstone supervolcano is beneath Marie Byrd Land in Antarctica. A mantle plume is a domed upwelling of magma beneath the earth’s surface. It’s what creates Yellowstone’s geothermal features—such as geysers like the iconic Old Faithful, steam vents, mud pots, and hot springs. The mantle plume beneath Marie Byrd Land is causing some melting of the ice from below, creating lakes and rivers beneath the ice.

mb

This mantle plume isn’t new. In fact, it formed 50 to 110 million years ago. And it isn’t an increasing threat, according to NASA. But it may help explain why the ice sheet collapsed so rapidly during warming of the climate at the end of the last ice age, around 11,000 years ago. Now we are in a new era of rapid warming, ice sheets are increasingly thinned and weakened, the forces of human and geothermal activity working in concert against vulnerable ice shelves, it appears.

Sea Ice

Prepare to be mesmerized by another stunning sea ice visual by Kevin Pluck (who was featured on Vox this week—check it out).

Earlier in the week, Kevin warned me that this month’s data was looking troubling, with a sudden sharp decline in global sea ice concentration:

Capture
close

 

 

 

Let’s zoom in a little. That red line at the bottom represents this year.

 

 

 

 

 

Kevin also created this look at the changes in carbon dioxide—a major greenhouse gas—over time.

It’s no wonder our planet’s ice is melting, is it?

If you’re interested in comparing sea ice extent on certain dates, there’s this handy tool.

Ice Shelves & Glaciers

Last week, I talked about the fact that Antarctica’s Totten glacier is melting from below. The same thing is happening to Greenland ice sheets.

I can’t stop watching these fascinating GIFS of Antarctic ice provided by CNRS Research scientist Simon Gascoin.

Thwaites Glacier ice shelf:

Larsen C ice shelf:

Pine Island Glacier:

geyser

A sneak peek at part of an illustration from Volcano Dreams

Alas, this week’s This Week in Ice is much abbreviated due to an impending book deadline. And it’s all about a supervolcano!

Volcano Dreams—a story of the Yellowstone supervolcano and the area’s fauna, by award-winning author Janet Fox and illustrated by me—is set for release on September 25th, 2018, from Web of Life Children’s Books! Huzzah!

 

 

 

I’m looking forward to soon sharing my process for creating the images for this book, which included a week-long visit to Yellowstone in early June for research.

And I look forward to being back very soon!

This Week in Ice–Oct. 22-28

krill C

Antarctic Krill Under Ice                   Copyright © Marlo Garnsworthy 2017

Earlier this week, I thought this might be a quieter week in ice news. In fact, it has been anything but. Some of this news is very cool, and some may make you uncomfortable. Hopefully, it will inspire you to fight for our planet’s vital ice, for our oceans, and for our global climate.

Sea Ice

ARCTIC

arctSea ice in the Arctic may be declining faster than previously thought. This GIF posted by Zack Labe will shock you:

The National Snow and Ice Data Center is reporting lower than average ice extent for this time of year. N_iqr_timeseries

The Norway Ice Service, too, is consistently reporting lower than average ice extent.

Scientists who drilled through sea ice were surprised to find an adult jellyfish (Chrysaora melanaster) drifting by. Scientists had previously assumed that only polyps (which release tiny baby jellyfish in the spring) survived the winter. Check it out! Amazing!

ANTARCTIC

ant

The sea ice at McMurdo Station has broken out earlier than usual.

Mark Brandon notes that a new polynya (an area of open water within the sea ice) has formed by the Rydberg Peninsula. Check out his cool GIF demonstrating this. He says this is fairly normal for this time of year and that it is a latent-heat polynya. A latent heat polynya is a coastal polynya, and it’s formed as winds push sea ice away from land. He tells me a much larger polynya has formed by the Dotson Ice Shelf, just as it did last year.

Brandon also suggests that the massive Weddell polynya, which has made the news the world over, will only be visible for about two more weeks, after which the sea ice will have retreated. This is a sensible-heat (or open-ocean) polynya, formed by the upwelling of warm water toward the surface, and after the ice has retreated, the processes that formed it will still be operating. (The Weddell polynya is the yellow patch within the dark red ice cover in the image above.)

Simon Gascoin produced this great GIF that shows the drifing of the Weddell polynya and surrounding sea ice.

The Weddell polynya could help us understand changing circulation currents in the Southern Ocean caused by Climate Change.

Glaciers

Land ice is formed by layers upon layers of snow, which become compacted over time.  A new study discussed in this Scientific American article suggests that a combination of greater katabatic winds (downward and often very strong winds) and warmer air over Antarctica could reduce the amount of snow falling.

Like giant rivers of ice, glaciers flow toward the sea. The Thwaites and Pine Island glaciers are accelerating rapidly. The speed of the Pine Island ice shelf (the floating ice where the glacier meets the sea) increased by 75% (between 1973 and 2010) due to warmer waters in front of it and increased calving of icebergs. (More on those in a moment.)

See GIFs of these glaciers by Simon Gascoin (which I’ve been unable to embed here, alas).

https://giphy.com/embed/l1J9MN7XA4Js04nJu

via GIPHY

And then there was this, which had the ice scientists on Twitter abuzz this week.

Icebergs

Earlier in the week, we got this great image of huge iceberg B-44, which calved from the Pine Island Glacier back in September.

Just when I thought there’d be no other significant news about icebergs this week, the US National Ice Center NOAA reported that this same iceberg has broken up into pieces too small to be tracked.

WOW! This blows my mind. When B-44 calved a few short weeks ago, it was three times the size of Manhattan. Is it normal for such a massive iceberg to beak up so quickly? I asked Stef Lhermitte.

Note: PIG = Pine Island glacier

A-86A on the other hand is still  largely intact.

Giant_berg_on_the_move_node_full_image_2

And I was excited to come across this list of tabular icebergs. Icebergs are either tabular or non-tabular. Tabular icebergs have steep sides and a flat top and can be very large—or downright enormous. They’re formed by ice breaking off an ice shelf. The largest tabular iceberg on record is B-15 (which calved in 2000). It was a whopping 11,000 sq. kilometers (4,200 sq. miles) or almost as big as Connecticut.

What happens to a huge iceberg like B-15 over time? NASA’s Earth Observatory shared that with us this week, plus this fab image of four huge icebergs near the Weddell Sea.

bergs

Effects on Marine Life

Warmer and more acidic waters are evicting their inhabitants.

More acidic oceans will affect all marine life.

walwus

As sea ice melts, walruses are forced to spend more time on land. This effect of Climate Change has had terrible consequences in Siberia with the death of hundreds of walruses, which were driven off a cliff by polar bears.

And in a devastating blow, there will be no new marine sanctuary in the Antarctic. Tragic.

General News

An Australian research team has determined that coal use will have to be “pretty much” eliminated by 2050 to have any chance of stopping sea level rise.

New York could see bad flooding more often.

And while this is not ice news, I felt it important to bring attention to a local story with far-reaching implications. This week in Rhode Island, three EPA scientists, who were slated to speak at a conference about (among other things) the effects of Climate Change on Narragansett Bay and its watershed and this report, were prohibited from speaking by the EPA. This news made The New York Times and The Washington Post among others. The Executive Director of Save the Bay made this statement. Happily, this story even caught Stephen Colbert’s attention, bringing this travesty to a much wider audience:

As always, I am not a scientist, just a writer/illustrator and science communicator passionately in love with sea ice. I welcome input and corrections by polar scientists as I learn more about this remarkable and vital part of our planet and bring this knowledge to a wider audience.