This Week in Ice: Jan. 7-13, 2018

DS8Fqz6WAAAxXdw.jpg

Copyright © Marlo Garnsworthy

I took this photo on my local beach in southern Rhode Island early one morning at the start of the week. The whole shore was covered in thick ice, which I’ve never seen there, and the waves were sluggish in the 0 degree F/-18 degree C conditions. But this is nothing compared to just a little farther east around Cape Cod, Massachusetts, which has seen the rapid growth of sea ice during our recent Arctic blast.

terra.JPG

Credit: Terra Satellite, Jan 7, 2018

Capturey

Cape Cod Bay from Rock Harbor Beach                                          Credit: Scott Eisen/Getty Images

Meanwhile, global sea ice concentration is experiencing a troubling start to the year.

Let’s zoom in a little, so you can better see the dipping of 2018’s bright red line:

Capture

A new study has shown that melting sea ice is changing the flow of nutrients into the Arctic Ocean. With sea ice melting, sediment from the continental shelf containing nutrients, carbon, and trace metals is flowing into the Arctic Ocean. Along with increased light (also due to the melting of sea ice), this influx of nutrients could cause a phytoplankton bloom. Phytoplankton form the base of the marine food chain, and it’s likely this increased productivity would affect the marine ecosystem.

Scientists are closely watching the Beaufort Gyre, a major wind-driven current in the Arctic Ocean, which has, historically, weakened every five to seven years and reversed direction. When this happens, it expels ice and freshwater into the eastern Arctic Ocean and North Atlantic.

But the gyre seems to be stuck and has been spinning clockwise for twelve years, collecting cold freshwater from melting sea ice, runoff from Russian and North American rivers, and from the Bering Sea. When the gyre does eventually slow and reverse direction, scientists are concerned that it will expel this icy freshwater into the Northern Atlantic, causing severe winters and a disruption to the fishing industry in northern Europe.

Sea Ice — Current Conditions

ARCTIC

Arctic sea ice is at a record low for this time of year.

Arc

Credit: NSIDC

arcy

Credit: NSIDC

Arctic sea ice has been particularly low in the Bering and Chukchi Seas, which connect with the northern Pacific Ocean.

ANTARCTIC

Antarctic Sea ice concentration is also far below the mean, though not quite as low as last year’s record low.

Ant

Anty

Ice Shelves & Icebergs

Strong El Niño events cause large changes in Antarctic ice shelves, a new study has found. While more snow falls on the surface during such events, changes in ocean circulation cause increased melting from below, resulting in a net loss of ice mass:

Iceberg A-86a is still bumping around near the Larsen C ice shelf from which it calved back in July.

Michael Wolovick, a glaciologist from Princeton has been studying whether building massive underwater walls of sand and stone at the mouths of unstable glaciers could slow or reverse their collapse.

I will be continuing the Sea Ice Sketch Project this weekend, and posting on Twitter as I complete each piece and continue my exploration of sea ice—as well as ice shelves and icebergs.

I’m ending this week’s post with some stunning imagery of sea ice, like spectacular abstract artworks, from NASA Earth Observatory.

Capturea

Newly formed sea ice (gray) in the Weddell Sea.                                        Credit: NASA/Nathan Kurtz.

Capturex

Pieces of sea ice, thick and thin, mingle in the Weddell Sea. Credit: NASA/Digital Mapping System.

Capturef

Sea ice near the Larsen C Ice Shelf.                                           Credit: NASA/Digital Mapping System.

As always, I am not a scientist but a writer/illustrator and science communicator passionately in love with sea ice, ice shelves, and polar ice in general. I welcome input and corrections from and connections with polar scientists as I learn more about this remarkable and vital part of our planet and bring this knowledge to a wider audience. 

Salt Marshes Stink!

marsh

This week’s science adventure took me to a salt marsh in Barrington, Rhode island, with scientists Kenny, Tom, and Scott. With a wheelbarrow, numerous steel rods, two plastic step-stools, a plank of wood, several bags of quick-drying concrete, food and water for a hard day’s work, and sophisticated equipment that talks to satellites, we trudged through spongy, oozing, pungent coastal marsh.

And boots. Don’t forget tall, waterproof boots—-or waders if you’re lucky—-if you venture into the marsh. A salt marsh floods with the tides, and it’s a boggy, stinky, and treacherous place.

mud

Careful where you step, or the marsh may suddenly swallow a limb.

It’s hard to describe the stench of the marsh’s thick black mud. Mix rotten eggs, worn and moldy socks, and a briny tang, and you might be getting close. It’s an odor I’ve come to love, living in coastal Rhode Island, reminding me of happy days in my kayak, floating by spindly spider and fighting fiddler crabs, mussels, oysters, tiny fish called mummichogs, and graceful great blue herons and egrets. You can feel the abundance of life around you.

fiddler

Fiddler crab

Wetlands are areas of high productivity, meaning uncountable plants are breathing, growing, and reproducing, using sunlight to turn carbon dioxide and water into food for themselves and other organisms.

goose

Both migrating and resident Canada geese visit the salt marsh.

Macro-algae, various marsh grasses, and islands of shrubs, juniper trees, and other plants grow here. As Tom tells me, “Wetlands are now thought to be as productive as rain forests.”

It’s thrilling to be surrounded by one of the planet’s greatest carbon sinks. (A carbon sink is an area where productivity is high. Here masses of carbon dioxide—a major greenhouse gas—are taken up by plants.) Salt marshes, like other areas of high productivity such as rain forests and the Southern Ocean, are vital for mitigating global warming and climate change.

Today, Kenny and Tom are installing SETs—“surface elevation tables.” It’s an appropriate acronym for points set in concrete. Scott then uses sophisticated equipment to determine the elevation of each.

“I’m tying the SET into the National Spatial Reference System,” says Scott. “Water levels are rising, and salt marshes need to rise at the same pace. Otherwise they will flood and turn into mudflats—where vegetation can no longer grow.”

They will return to this marsh—and others like it—again and again over the years, measuring how its elevation and health change over time. Will they grow and rise? Will growth keep up with rising sea levels? Or will they sink, die, and regress?

stake

Scott and Kenny work together to pound a long metal pole deep into the spongy ground.

Tom, who has been mixing concrete to hold the stake in place, stands and stretches. This is hard physical work, and we are tired, wet, and filthy. He gazes out over the waving marsh grasses. “I grew up by the salt marsh. We could play football on the marsh in those days.”

kt

Tom concretes the stake into place, while Kenny spreads powdered rock called feldspar.

“You couldn’t do that now,” Kenny says matter-of-factly. We look down at the soggy peat below us. It ripples beneath us with each strike of the post hammer. “Especially here—this marsh is so degraded.”

“They didn’t used to stink as bad,” says Tom. “A lot of the stinkiness is due to the fact that they are now drowning in place due to sea level rise, sadly.”

Now Kenny is shaking out white powdery feldspar over two sections of the plot. “The feldspar is for what’s called a marker horizon,” he says. “As organic and inorganic material gets deposited on it over time, we can later take a small core and measure how much has accumulated over the feldspar over time, divide by time, and you get a surface accretion rate.”

“Why should we care about marshes?” I ask as they all take a breather. Kenny and Tom reel off a list of reasons.

Salt Marsh Facts:

  • Salt marshes grow on coasts and in estuaries the world over. In the US, they can be found on every coast.
  • Salt marshes stink due to the gases given off by decomposing organic matter.
  • The soil is composed of spongy peat (decomposing plant matter) and thick mud.
  • The marsh is frequently flooded, then drained, by salty tidal water.
  • Salt marshes provide a habitat—including food, shelter, and a safe place for juveniles—for over 75% of the fish and selfish humans enjoy.
  • Humans love wetlands and estuaries too for fishing and shell-fishing, boating, paddling, birding, and more.
  • Salt marshes protect shorelines from erosion and buffer wave action, especially during storms.
  • They trap sediment, which also helps protect the estuary.
  • They absorb rainwater and reduce coastal flooding.
  • They filter water and absorb excess nutrients (e.g., from fertilizers), thereby keeping beaches and waterways cleaner.

Salt marshes might stink, but what’s not to love about them? They are essential for our economy, culture, and environment.

marsh

We love the salt marsh!

You can see an interview with Kenny in this piece by the Providence Journal.

Kenneth Raposa is a salt marsh ecologist with The Narragansett Bay National Estuarine Reserve, Tom Kutcher is a wetland scientist with Rhode Island Natural History Survey, and Scott Rasmussen is an environmental scientist with the Environmental Data Center at the University of Rhode Island. This project is funded through the RI Coastal Resources Management Council (CRMC) to establish two additional long-term salt marsh monitoring sites to complement the existing few sites. The goal is to build a strong network of long-term sites around all coastal RI to gain a better understanding of what is happening to salt marshes throughout the state.

Eelgrass Adventure

IMG_94

This week’s science adventure took me to the watery underworld of Long Island Sound with scientists Mike Bradley and Scott Rasmussen as part of a US Fish and Wildlife Service research project. Our goal: to check the extent and health of eelgrass beds along the Connecticut and Long Island shores.

We pound across the Sound on a glorious autumn morning. Terns and gulls wheel and dive, feasting on jumping fish. It’s a perfect day for fishing, and we pass numerous small boats doing just that. Coastal New England, USA, is famous for its bountiful and diverse seafood.

“Eelgrass provides habitat for juvenile fish and shellfish,” says Mike. “So, if you like fish and shellfish, you should care about eelgrass.” Eelgrass also helps stabilize the sandy areas close to shore and in estuaries.

Prior to our adventure, Mike mapped the possible extent of eelgrass by studying dark patches near the shore from areal imagery–photographs taken of calm waters at low tide from a plane early this summer. Seaweed–known by scientists as macroalgae (because seaweed is actually large algae)–can also appear as dark patches. So, using an underwater video camera, we traveled along multiple straight lines–or transects–across each area, and Mike plotted where eelgrass was actually present.

FullSizeRender (1)

Mike plots eelgrass, while Scott maneuvers the video camera and cheery Tom Halavik, retired from the US Fish & Wildlife Service, drives the boat.

From the boat, eelgrass is a shifting golden-green tapestry beneath, and seaweed looks dark and foreboding. But viewed from below, eelgrass and seaweed beds are a colorful, gently swaying, otherworldly forest. Clams and oysters litter the bottom, spider and green crabs scuttle and hide, and fish such as tautog hunt for prey.

Capture (1)

Tautog on the hunt

Mike will return numerous times to Long Island Sound to complete the survey of over 300 eelgrass beds, covering approximately 2,500 acres. The video and mapping data he collects will be used by biologists to monitor the health of eelgrass along this section of New England coastline.

Near the end of our journey, in a quiet aqua-watered cove of Plum Island, we were treated to a delightful encounter with up to twenty seals, who popped their heads up to study us before continuing to fish and play. It was a magical end to my eelgrass science adventure!

FullSizeRender (2)

Spot the seals!

Eelgrass Facts

  • There are 15 species of eelgrass–Zostera–and they are widespread along coastlines in the Northern Hemisphere, as well as parts of Australia and Africa.
  • Eelgrass needs significant sunlight to grow, so it’s found in shallow waters and does better in clear, not murky water.
  • Its success is also affected by water temperature and quality. As water temperatures increase while our planet warms, eel grass becomes less successful, which means habitat for juvenile fish and shellfish declines.
  • Increased nitrogen in the water–due to runoff from fertilizer, detergents, etc.–benefits macro-algae, which competes with eelgrass.

This project is a partnership between the Environmental Data Center of the University of Rhode Island and Suzanne Paton, Senior Biologist at Southern New England’s US Fish and Wildlife Service. The funding for this survey was provided by the EPA Long Island Sound Study, and the information will help evaluate water quality and habitat restoration projects that have been implemented over the years. This data will be compared to data collected in 2002, 2006, 2009, and 2012 by the US Fish & Wildlife Service in collaboration with the EPA to assess long-term trends and progress toward the restoration of this important habitat. 

Thanks, Mike Bradley, for taking me along!