Icebergs Fertilize the Ocean–New SciArt

Originally published as Tuesday Night Mad Scramble on our Pixel Movers & Makers blog.

The last couple of weeks have been a whirlwind of activity for us both. Kev has been keeping himself busy while I prepare for NESCBWI 18. Check out his latest illuminating animation — It’s a map, and your home is on it!

I’ve been readying my postcards and illustration portfolio for this Friday night’s Portfolio Showcase, in which art directors, editors, and agents, followed by conference attendees, will have a chance to peruse each illustrator’s portfolio.

PF.jpg

My big goal over the last two weeks has been to create a new Antarctica-inspired piece. As you may have realized by now, we at Pixel Movers & Makers are both enthralled by polar ice.

I’m particularly interested in the relationship between polar ice and the ecology of the surrounding environment (as well as how that ecology acts upon the ice itself), and primarily, how it affects the success of phytoplankton. Among other things, I’ve been wanting to make a piece that explores the role of icebergs in ocean fertilization.

I decided to make something showing a simplified food chain around the iceberg, with an informational shape poem about the “life” of an iceberg, from the formation of the glacier from which an iceberg calves to its eventual melting out at sea.

Last week, on Pixel Makers and Movers, I showed the early stages of that process.

ca 

 

After a detailed pencil drawing of each element, which I scan, I am using digital oil paint.Since then, it’s been a race against the clock to complete the illustration in time for my printer to do their thing. (Shout-out to fantastic Iolabs who patiently put up with my last-minute rush every April; thanks Emma!)

And now for the reveal of the final piece:

Vizzies FINAL web C

Text and image Copyright © Marlo Garnsworthy 2018                   www.WordyBirdStudio.com

 

Now, it’s back to making penguins for Kev to swim and waddle–as we continue with our animation about Antarctica’s Pine Island Glacier!

penguin.jpg

 

Note: this post also appears on my Wordy Bird Studio site.

An Extraordinary Year

16174583_10154015478720771_7681126045546738551_n

At McMurdo. Our ship, the RVIB Nathaniel B. Palmer, in the background.

Earlier this year, I had the life-changing experience of being the science communicator and outreach ambassador for the SNOWBIRDS Transect research cruise from McMurdo Station, Antarctica, through the wild Southern Ocean.

download

Marine technicians steady the megacorer, which has returned from the sea floor filled with mud.

I constructed and maintained our website and social media, raised public awareness, blogged about our science, was the photographer, mentored and edited graduate students writing guest blog posts, created illustrations, and got my hands wet and dirty whenever an extra hand was needed.

watermuddownload (1)

I’m now writing a book about our high-seas adventure and our fascinating science, which explored the roles of nitrogen and silicon in the success of diatoms, and included growing diatoms, filtering marine snow, and retrieving deep-sea mud cores. (I also have another polar science book underway.)

Mid-year, I traveled to Yellowstone National Park to do research for the illustrations for VOLCANO DREAMS, a non-fiction book for children about the Yellowstone supervolcano by award-winning author Janet Fox.

IMG_0729IMG_0971

I’ve spent the rest of the year completing the illustrations. Volcano Dreams will be published by Web of Life Children’s Books in September, 2018. This is the first time I’ve illustrated a published children’s picture book, something I’ve worked for for years.

In September, I started POLAR BIRD, the next step on my journey as a science communicator, non-fiction writer, and sci-art illustrator.

pbPOLAR BIRD is a labor of love, and I’m grateful to everyone who has liked, shared, retweeted, subscribed, and—most especially—read.

2017 has been truly transformative, and I’ve never felt more like I’m on the right path. More than anything, I dream that my work will lead me back to the ice.

As we head into 2018, I’m actively seeking opportunities to be an embedded team member and offer my experience and diverse skill set on future research cruises, taking the considerable and important work required of Outreach—both before, during, and after an expedition—off scientists’ hands.

While I’d be thrilled to join any research cruise, I’m particularly interested in sea ice dynamics and ecology, polynyas, phtyoplankton, krill, the biological pump and carbon cycle, paleoclimatology, ice shelves and glaciers, sea bird and marine mammal ecology, and more… (I could easily spend the rest of my life writing and illustrating about science in polar regions.)

Thank you for reading! I look forward to bringing you new science adventures, more about our planet’s vital sea and land ice, and new art.

I wish you all a very healthy, peaceful, and happy New Year!

happy

 

 

 

 

This Week in Ice: Dec. 10-16, 2017

krill C

Antarctic krill under sea ice                                                                Copyright © Marlo Garnsworthy

This week in ice begins with krill—or more specifically krill poop.

Krill are tiny shrimp-like creatures that live in schools called swarms, which can be thick (10,000 to 30,00 individuals per square meter) and vast (one swarm was 170 square miles to a depth of 660 feet). Found in oceans worldwide, krill are—in terms of biomass (the mass of living organisms)—one of the most significant species on our planet.

Krill feed in the upper reaches of the water column, eating phytoplankton (tiny plants) especially diatoms, and zooplankton (tiny animals such as copepods and amphipods). Zooplankton also feed on phytoplankton. Like other plants, phytoplankton take up carbon dioxide during photosynthesis. So, when krill eat phtyoplankton or zooplankton, they’re consuming this carbon.

A constant stream of organic matter such as fecal material and parts of dead organisms, as well as inorganic material such as dust, is constantly sinking through the water column. This material is called marine snow, and it can take weeks to reach the ocean floor, where it accumulates as a thick oozy mud (which we studied on our SNOWBIRDS Transect research cruise). When krill defecate, their fecal material sinks as marine snow through the water column, and any carbon in it is sequestered.

A study by scientists from the British Antarctic Survey found that the behavior of Antarctic krill could assist the sequestration of carbon dioxide. Scientists found that krill move up and down within their swarms. This behavior is called satiation sinking—and in simple terms, it means that once you’ve eaten your fill at the buffet, you move away from the buffet table, allowing others to feed. If you’re a krill, you sink to the lower reaches of the swarm, giving your carbon-rich poop a greater chance of making it to the sea floor.

British Antarctic Survey ecologist and lead author Professor Geraint Tarling says:

“This new finding could equate to krill sequestering 23 million tonnes of carbon to the deep sea each year, equivalent to annual UK residential greenhouse gas emissions.”

Something to keep in mind when regulating the fishing of krill. Krill are also a vital food source for fish, whales, penguins, and other marine species.

report

Credit: NOAA

The big polar news this week was the release of NOAA’s Arctic Report Card.

“Arctic shows no sign of returning to reliably frozen region of recent past decades. Despite relatively cool summer temperatures, observations in 2017 continue to indicate that the Arctic environmental system has reached a ‘new normal’, characterized by long-term losses in the extent and thickness of the sea ice cover, the extent and duration of the winter snow cover and the mass of ice in the Greenland Ice Sheet and Arctic glaciers, and warming sea surface and permafrost temperatures.”

Highlights (Credit: NOAA Arctic Report; links embedded by me)

  • The average surface air temperature for the year ending September 2017 is the 2nd warmest since 1900; however, cooler spring and summer temperatures contributed to a rebound in snow cover in the Eurasian Arctic, slower summer sea ice loss, and below-average melt extent for the Greenland ice sheet.
  • The sea ice cover continues to be relatively young and thin with older, thicker ice comprising only 21% of the ice cover in 2017 compared to 45% in 1985.
  • In August 2017, sea surface temperatures in the Barents and Chukchi seas were up to 4° C warmer than average, contributing to a delay in the autumn freeze-up in these regions.
  • Pronounced increases in ocean primary productivity, at the base of the marine food web, were observed in the Barents and Eurasian Arctic seas from 2003 to 2017.
  • Arctic tundra is experiencing increased greenness and record permafrost warming.
  • Pervasive changes in the environment are influencing resource management protocols, including those established for fisheries and wildfires.
  • The unprecedented rate and global reach of Arctic change disproportionally affect the people of northern communities, further pressing the need to prepare for and adapt to the new Arctic.

Most troubling is that melting of sea ice is unprecedented in at least 1,500 years.

1500

Credit: NOAA

Temperatures in the Arctic have been abnormally high, so high that computers disqualified temperature data, assuming it was an error. 

Sea Ice

ARCTIC

Arctic sea ice extent and concentration remain well below the mean. Sea ice cover in the Beaufort and Chukchi Seas is at a record low extent. The National Snow and Ice Data Center says:

“November 2017 will be remembered not for total Arctic ice extent, which was the third lowest recorded over the period of satellite observations, but for the record low extent in the Chukchi Sea. This is a key area for Arctic Ocean access, and is an indicator of oceanographic influences on sea ice extent.”

arc1

Credit: NSIDC

Arc2

Credit NSIDC

ANTARCTIC

Antarctic sea ice remains below the mean. After the third-lowest November average monthly extent in the satellite record, sea ice extent is near-average in all regions except the Weddell Sea, where it’s at a record low. Sea ice around the Weddell polynya (aka Maud Rise polynya, depicted by the shape toward the top) has melted, leaving open ocean.

Ant1

Credit: NSIDC

Ant2

Credit: NSIDC

Glaciers & Ice Shelves

eat

Part of the East Antarctica ice sheet                              Credit: Michael Hambrey/Glaciers Online

The East Antarctic Ice Sheet may not be as stable as previously thought says this study. In the past, it has undergone dramatic retreats, and scientists now feel that, as the planet warms, it may provide a significant contribution to sea level rise.

Another study showed that even small losses of ice at the edges of ice sheets can accelerate the movement of glaciers grounded on rocks. Lead-author Ronja Reese (Potsdam Institute for Climate Impact Research) says:

“Destabilizing the floating ice in some areas sends a signal as far as 900 kilometers across the largest ice shelf in Antarctica… It does so with an amazing speed, similar to the speed with which shocks from an earthquake travel.”

Icebergs

On Thursday, the US Coast Guard International Ice Patrol said around 1,008 icebergs drifted into shipping lanes in the North Atlantic, up from 687 in 2016. This is the fourth consecutive “extreme” ice season. Retreat of the Greenland ice sheet/calving of icebergs, plus increased storminess that broke up sea ice, setting icebergs free to drift, is responsible, according to Ice Patrol Commander Kristen Serumgard.

We have a great new graphic showing the drift of massive iceberg A-68, which calved from the Larsen C ice shelf (Antarctica) back in July.

Credit: Dave Mosher

Scientists are on their way to study the effects on lifeforms that dwelled in darkness under the ice sheet now they’ve been exposed to the light by this dramatic calving event.

Starving Polar Bears, Giant Penguins, & the GOT Ice Wall

Back to that viral “starving polar bear” video that everyone may have gotten wrong. As I discussed last week, some experts, such as polar bear biologist Andrew Derocher and Arctic wildlife biologist Jeff Higdon, believe that bear may have not been starving and may in fact have been injured or diseased. Nunavut bear monitor Leo Ikakhik agrees the bear was likely sick or injured.

(In following Derocher and Higdon and this polar bear story, I’ve discovered that polar bear Twitter is not an entirely pleasant place for polar bear scientists—it’s somewhat of a hangout for a certain breed of climate change deniers, who frequently cite dubious sources.)

While that polar bear may have died due to other causes, the fact remains that polar bears—alongside other sea ice-dependent species—will face increasing challenges as sea ice continues to decline.

This study by Deorcher et al states:

“Anthropogenic global warming is occurring more rapidly in the Arctic than elsewhere, and has already caused significant negative effects on sea ice-dependent species such as polar bears. Although observed effects have thus far been gradual, the large amount of annual variation in the climate system may cause habitat changes in individual years that exceed the long-term trend. Such years may be below critical thresholds necessary for feeding and result in unprecedented reductions in survival, reproduction, and abundance in some populations.”

Why the media keeps getting Arctic news wrong.

giant

Credit: Gerald Mayr—AP

On a New Zealand beach, scientists have found fossil evidence of a 5’8″ penguin that lived 60 million years ago.

iceall

And that ice wall in Game of Thrones? Impossible without magic, says glaciologist Martin Truffer (University of Alaska Fairbanks).

As always, I am not a scientist, just a writer/illustrator and science communicator passionately in love with sea ice. I welcome input and corrections by polar scientists as I learn more about this remarkable and vital part of our planet and bring this knowledge to a wider audience. 

 

 

Why Sea Ice?

IMG_8412

Melting sea ice from above                                                       Copyright © Marlo Garnsworthy

I am in love with sea ice.

My first view of the ice came from a Hercules aircraft bound for McMurdo Station, Antarctica, in January this year, the first step in my voyage as Science Communicator for the SNOWBIRDS Transect research cruise aboard the RVIB Nathaniel B. Palmer.

But in preparing for my journey, I had been reading about sea ice for some time. Anxious about going to sea, I devoured as much information about the ship and the journey as I could to prepare myself. I soon came across this video by Cassandra Brooks.

I was hooked. While most of our voyage would be upon the wild Southern Ocean, well beyond the ice, I longed to experience sea ice as fully as I could.

Eager to know more about breaking ice, I came across this description of ice navigation (scroll right down) by Captain David “Duke” Snider. I don’t know how many times I listened to it and imagined crushing ice in the middle of the night, far from home and family, in such a remote and dangerous part of the world. Despite my trepidation, I couldn’t wait to go.

And I couldn’t get sea ice off my mind. The more I learned about this remarkable environment, the more I was enchanted.

You might imagine that the frozen seas are a barren and lifeless place, but nothing could be further from the truth.

DSC_0575

Juvenile emperor penguin                                                    Copyright © Marlo Garnsworthy

Breaking ice in the Ross Sea, I saw Adélie and emperor penguins, Weddell and crabeater seals, skuas (a gull-like seabird), snow petrels, Antarctic petrels, orcas on the hunt, and more. But I knew so much more lay beneath the surface.

Sea ice is a vital habitat for the growth of phytoplankton, tiny plants (mainly algae and bacteria). Beneath the ice, zooplankton (tiny animals) drift, providing nutrition for krill and the larger animals that feed on them, such as fish, penguins, seals, and whales. During the eternal days of a polar summer, when the sun never sets, phytoplankton bloom in this nutrient- and light-rich environment, reproducing exponentially until the water can appear green and soupy.

The base of the marine food chain, phytoplankton not only feed our oceans but provide about the half the oxygen we breathe. They also act as a carbon sink, taking up massive amounts of carbon dioxide—a major greenhouse gas—from our atmosphere.

DSC_0582

Crabeater seals resting on the sea ice, Ross Sea                    Copyright © Marlo Garnsworthy

Sea ice provides a safe resting place close to food for birds like penguins, mammals such as seals, and in the Arctic, walruses and polar bears. Some species also give birth on the sea ice.

The physics of sea ice are fascinating, too. Ice grows, shifts, flows with ocean currents, cracks, and melts, ever changing. In fact, sea ice has a direct impact on ocean currents because, as salty sea water freezes, brine is pushed out of the ice and trickles down through brine channels into the sea water below. The resulting extra-salty sea water is heavy and sinks, causing currents that drive ocean circulation worldwide.

DSC_0597

Weddell seals rest beside a lead (open crack) in the ice.       Copyright © Marlo Garnsworthy

Sea ice has high albedo, meaning it has a bright surface, reflecting around 80% of the sunlight that strikes it. Sea ice is vital in helping keep our planet cool enough for habitation and regulating our climate.

cropped-16426196_10154047848045771_5016621211149020204_n.jpg

Penguin watching requires sunglasses due to the high albedo of sea ice.  Copyright © Marlo Garnsworthy

I will be exploring in more depth the physics, ecology, and importance of sea ice in posts to come.

Yes, I am passionately in love with sea ice, and it’s my greatest dream to return to the ice, accompanying scientists aboard an ice cruise. I hope readers will come to love it, too, and help me fight for it. Our vital sea ice is melting, and without it, our world will be a very different place.

DSC_0494

Adélie penguins and skuas at dawn, Ross Sea                   Copyright © Marlo Garnsworthy

 

 

This Week in Ice: Nov. 12–18

This week, NASA’s Operation Icebridge offered us more spectacular views of Antarctica. Operation Icebridge uses research aircraft to capture images of Earth’s polar ice “to better understand connections between polar regions and the global climate system. IceBridge studies annual changes in thickness of sea ice, glaciers and ice sheets.”

This is one of my favorites:

 

Sea Ice

Sea ice extent and concentration in both the Arctic and Antarctic remain well below average. You can read a full summary of October’s Arctic and Antarctic sea ice conditions here.

ARCTIC

Arctic sea ice grows rapidly at this time of year. October’s Arctic sea ice concentration was the fifth lowest on record for that month (satellite data from 1979 to present).

Current conditions: 

ac

Credit: NSIDC

arctic

Credit: NSIDC

Unlike Antarctic sea ice, which is usually only one to two years old due to seasonal melting, Arctic sea ice can last for multiple years. This animation shows how older Arctic sea ice is now thinning and melting.

 

ANTARCTIC

As days lengthen and temperatures increase in Antarctica, with the approach of the Austral summer, sea ice melts. October was tied with 2002 for the latest maximum sea ice extent and the second lowest Antarctic maximum extent (satellite data, 1979 to present).

Current conditions:

antc

Credit: NSIDC

ant

Credit: NSIDC

This one by Zach Labe shows more data:

Wind has a large role in sea ice formation, comparable to or even more important than temperature and rain says researcher Massimo Frezzotti. This research explores the processes that have affected sea ice variability, as well as the abundance of seals and penguins in the Ross Sea, over the last ten thousand years.

twitterkrill

Antarctic krill under ice                                                Copyright © Marlo Garnsworthy

Krill are small shrimp-like crustaceans and a vital link in marine food chains. Antarctic krill, depicted in my painting, feed sea birds, penguins, seals, and whales.

A study in the Weddell Sea has shown that sea ice is a critical habitat for krill larvae during winter, and they find refuge from predators under the ice. But while it may be safer, it is not a food-rich environment. Krill do graze under the ice during the day, then at night drift down and away to more favorable feeding zones.

Glaciers & Ice Shelves

This graphic shows how land ice has decreased in Antarctica and Greenland from 2002 until the present.

One of the numerous reasons we should care about ice loss is that melting ice sheets not only raise sea levels but will have an effect on tides the world over. New research shows that, as ice sheets melt, sea levels don’t rise evenly across the world, and it matters which glaciers melt. In some places tide ranges will be increased, and in others reduced, thereby impacting coastal communities. These changes could also have an effect on larger scale ocean currents. Ocean currents affect our global climate, among other things. (Sea ice also has an effect on ocean currents, a subject I’ll be exploring in weeks to come.)

NASA has provided a new tool to show how sea level rise may affect 293 coastal cities around the world.

The Pine Island Glacier, which flows into West Antarctica’s Amundsen Sea, makes the biggest contribution to sea level rise. This is the same glacier that carved a massive iceberg, four times the size of Manhattan back in September (and a mere month later, it broke into pieces too small to track). Here, warmer waters interact with floating ice, weakening the ice shelf from below.

Watch an Alaskan glacier retreat over time:

 

Icebergs

Thanks to Operation Icebridge, we have our first closeup views of massive iceberg A-68A, previously only seen via satellite imagery.

iceberg

Credit: NASA/Nathan Kurtz

Scientist Stef Lhermitte notes further cracks in the Larsen C ice shelf, from which A-68 (the initial even larger iceberg) calved back in July.

DSC_0515

Copyright © Marlo Garnsworthy

In the absence of any other significant iceberg news, I offer this picture of a wind-and-sea-tossed  iceberg I took during a gale in Antarctica’s Ross Sea. Note the blue ice to its left. Blue ice looks that way because, over thousands of years, it has become very compressed, pushing out the air bubbles that give ice and snow its white appearance. Blue icebergs consist of very old ice, which has calved from glaciers and ice shelves into the sea.

And to finish, I hope you’ll enjoy this excellent series of short videos, showing how satellites have been monitoring life on Earth for over 20 years.

 

As always, I am not a scientist, just a writer/illustrator and science communicator passionately in love with sea ice. I welcome input and corrections by polar scientists as I learn more about this remarkable and vital part of our planet and bring this knowledge to a wider audience.