Iceberg Alley

37019298_10155335295920771_5255804750594572288_n (1)
When I returned home from Antarctica last year, I put this promise on my pin-board—that I would go back in the role of science communicator to this place that captured my soul, no matter how long it took. I would dedicate my days to an active role in communicating the vital importance of our polar regions. Well…

 

I’m beyond thrilled to share that I’ve been selected as the Outreach Officer for an IODP Antarctic expedition next year called Iceberg Alley (Iceberg Alley and South Falkland Slope Ice and Ocean Dynamics).Around mid-March next year, I’ll head down to Punta Arenas, near the southern tip of Chile, and board the JOIDES ResolutionThe JR is a research vessel with a drilling derrick. It’s able to drill deep into the seafloor to collect core samples and various measurements, providing data that informs us about our planet’s past.
We’ll sail through the notoriously wild Drake Passage and into the seas east of the northern Antarctic Peninsula, part of “Iceberg Alley” — where most icebergs converge after drifting counter-clockwise around the continent of Antarctica. Here they meet the warmer waters of the Antarctic Circumpolar Current (ACC) and melt, dropping sediment they picked up when they were glaciers grinding across the continent.
iceberg c

Iceberg in a Gale, Ross Sea, Antarctica                                         Copyright © Marlo Garnsworthy

We’ll drill in the Scotia Sea and the South Falkland Slope during two months at sea. Among other things, the sediment we recover will tell us where the iceberg originated and about melting of the Antarctic Ice Sheet (AIS) in the past. Since Antarctic glaciers are melting now as our planet warms, it’s important to know how the AIS responded in the past, so we can better prepare for a future of sea level rise and other changes.
I’m honored and so grateful to take on this role and be involved in such important work about subjects that fascinate me. And very excited! Wild seas, many icebergs, maybe sea ice, polar birds, and science about the Antarctic Ice Sheet… a dream come true!
I look forward to taking you with me!
(Also published on my Wordy Bird Studio site.)

 

Icy Interim

IMG_9114.JPG

Ross Sea ice and iceberg from the RVIB N.B.Palmer                          Copyright © Marlo Garnsworthy

While there was no This Week in Ice post this past week, plenty happened in ice news. Every day, I get up early and pore through headlines about sea ice, glaciers, ice shelves, the Arctic, Antarctica, and icebergs via Google and Twitter. I collect the links and tweets I think are interesting, read them, and eventually construct my blog posts each weekend. And last week was no exception, BUT…

…on Friday, I found out I’ve been accepted to attend a workshop on Antarctic Surface Hydrology and Future Ice Shelf Stability at Lamont-Doherty Earth Observatory, sponsored by the NSF. Since I’m not a scientist, I’m very honored and excited for this wonderful opportunity.

What’s “Antarctic Surface Hydrology and Future Ice Shelf Stability,” you say?

To learn more, check this out.

It’s also my first science conference–so, I’m busy learning how to create a science poster.

The entire ice system and that of the surrounding ocean is fascinating. I want to know how it all works: sea ice, ocean currents, polynyas, ice shelves (and the forces that act on them from above, below, within, and around), plus the ecology—diatoms and other phytoplankton, the marine food chain, benthic (seafloor) communities, the carbon cycle, etc, etc., etc. It’s a complex, fascinating, and intricately woven system, and while we are so far away, our actions and fates are interlinked.

Yet little of this is in most people’s consciousness, or if it is, it may cause a sense of unease that makes them turn away and shut down. My goal is to provide a bridge between scientists and the wider community that’s factual, that isn’t sensationalist, and which shows how worthy these parts of our planet are in and of themselves—not just because the collapse of the system could have drastic consequences for civilization.

So, This Week in Ice will be back, but please expect a fortnightly edition for now. In the meantime, I wrote an article about our SNOWBIRDS Transect research cruise for Envirobites this week. Here’s the link. 

Now, back to my poster…

 

 

 

An Extraordinary Year

16174583_10154015478720771_7681126045546738551_n

At McMurdo. Our ship, the RVIB Nathaniel B. Palmer, in the background.

Earlier this year, I had the life-changing experience of being the science communicator and outreach ambassador for the SNOWBIRDS Transect research cruise from McMurdo Station, Antarctica, through the wild Southern Ocean.

download

Marine technicians steady the megacorer, which has returned from the sea floor filled with mud.

I constructed and maintained our website and social media, raised public awareness, blogged about our science, was the photographer, mentored and edited graduate students writing guest blog posts, created illustrations, and got my hands wet and dirty whenever an extra hand was needed.

watermuddownload (1)

I’m now writing a book about our high-seas adventure and our fascinating science, which explored the roles of nitrogen and silicon in the success of diatoms, and included growing diatoms, filtering marine snow, and retrieving deep-sea mud cores. (I also have another polar science book underway.)

Mid-year, I traveled to Yellowstone National Park to do research for the illustrations for VOLCANO DREAMS, a non-fiction book for children about the Yellowstone supervolcano by award-winning author Janet Fox.

IMG_0729IMG_0971

I’ve spent the rest of the year completing the illustrations. Volcano Dreams will be published by Web of Life Children’s Books in September, 2018. This is the first time I’ve illustrated a published children’s picture book, something I’ve worked for for years.

In September, I started POLAR BIRD, the next step on my journey as a science communicator, non-fiction writer, and sci-art illustrator.

pbPOLAR BIRD is a labor of love, and I’m grateful to everyone who has liked, shared, retweeted, subscribed, and—most especially—read.

2017 has been truly transformative, and I’ve never felt more like I’m on the right path. More than anything, I dream that my work will lead me back to the ice.

As we head into 2018, I’m actively seeking opportunities to be an embedded team member and offer my experience and diverse skill set on future research cruises, taking the considerable and important work required of Outreach—both before, during, and after an expedition—off scientists’ hands.

While I’d be thrilled to join any research cruise, I’m particularly interested in sea ice dynamics and ecology, polynyas, phtyoplankton, krill, the biological pump and carbon cycle, paleoclimatology, ice shelves and glaciers, sea bird and marine mammal ecology, and more… (I could easily spend the rest of my life writing and illustrating about science in polar regions.)

Thank you for reading! I look forward to bringing you new science adventures, more about our planet’s vital sea and land ice, and new art.

I wish you all a very healthy, peaceful, and happy New Year!

happy

 

 

 

 

This Week in Ice: Dec. 10-16, 2017

krill C

Antarctic krill under sea ice                                                                Copyright © Marlo Garnsworthy

This week in ice begins with krill—or more specifically krill poop.

Krill are tiny shrimp-like creatures that live in schools called swarms, which can be thick (10,000 to 30,00 individuals per square meter) and vast (one swarm was 170 square miles to a depth of 660 feet). Found in oceans worldwide, krill are—in terms of biomass (the mass of living organisms)—one of the most significant species on our planet.

Krill feed in the upper reaches of the water column, eating phytoplankton (tiny plants) especially diatoms, and zooplankton (tiny animals such as copepods and amphipods). Zooplankton also feed on phytoplankton. Like other plants, phytoplankton take up carbon dioxide during photosynthesis. So, when krill eat phtyoplankton or zooplankton, they’re consuming this carbon.

A constant stream of organic matter such as fecal material and parts of dead organisms, as well as inorganic material such as dust, is constantly sinking through the water column. This material is called marine snow, and it can take weeks to reach the ocean floor, where it accumulates as a thick oozy mud (which we studied on our SNOWBIRDS Transect research cruise). When krill defecate, their fecal material sinks as marine snow through the water column, and any carbon in it is sequestered.

A study by scientists from the British Antarctic Survey found that the behavior of Antarctic krill could assist the sequestration of carbon dioxide. Scientists found that krill move up and down within their swarms. This behavior is called satiation sinking—and in simple terms, it means that once you’ve eaten your fill at the buffet, you move away from the buffet table, allowing others to feed. If you’re a krill, you sink to the lower reaches of the swarm, giving your carbon-rich poop a greater chance of making it to the sea floor.

British Antarctic Survey ecologist and lead author Professor Geraint Tarling says:

“This new finding could equate to krill sequestering 23 million tonnes of carbon to the deep sea each year, equivalent to annual UK residential greenhouse gas emissions.”

Something to keep in mind when regulating the fishing of krill. Krill are also a vital food source for fish, whales, penguins, and other marine species.

report

Credit: NOAA

The big polar news this week was the release of NOAA’s Arctic Report Card.

“Arctic shows no sign of returning to reliably frozen region of recent past decades. Despite relatively cool summer temperatures, observations in 2017 continue to indicate that the Arctic environmental system has reached a ‘new normal’, characterized by long-term losses in the extent and thickness of the sea ice cover, the extent and duration of the winter snow cover and the mass of ice in the Greenland Ice Sheet and Arctic glaciers, and warming sea surface and permafrost temperatures.”

Highlights (Credit: NOAA Arctic Report; links embedded by me)

  • The average surface air temperature for the year ending September 2017 is the 2nd warmest since 1900; however, cooler spring and summer temperatures contributed to a rebound in snow cover in the Eurasian Arctic, slower summer sea ice loss, and below-average melt extent for the Greenland ice sheet.
  • The sea ice cover continues to be relatively young and thin with older, thicker ice comprising only 21% of the ice cover in 2017 compared to 45% in 1985.
  • In August 2017, sea surface temperatures in the Barents and Chukchi seas were up to 4° C warmer than average, contributing to a delay in the autumn freeze-up in these regions.
  • Pronounced increases in ocean primary productivity, at the base of the marine food web, were observed in the Barents and Eurasian Arctic seas from 2003 to 2017.
  • Arctic tundra is experiencing increased greenness and record permafrost warming.
  • Pervasive changes in the environment are influencing resource management protocols, including those established for fisheries and wildfires.
  • The unprecedented rate and global reach of Arctic change disproportionally affect the people of northern communities, further pressing the need to prepare for and adapt to the new Arctic.

Most troubling is that melting of sea ice is unprecedented in at least 1,500 years.

1500

Credit: NOAA

Temperatures in the Arctic have been abnormally high, so high that computers disqualified temperature data, assuming it was an error. 

Sea Ice

ARCTIC

Arctic sea ice extent and concentration remain well below the mean. Sea ice cover in the Beaufort and Chukchi Seas is at a record low extent. The National Snow and Ice Data Center says:

“November 2017 will be remembered not for total Arctic ice extent, which was the third lowest recorded over the period of satellite observations, but for the record low extent in the Chukchi Sea. This is a key area for Arctic Ocean access, and is an indicator of oceanographic influences on sea ice extent.”

arc1

Credit: NSIDC

Arc2

Credit NSIDC

ANTARCTIC

Antarctic sea ice remains below the mean. After the third-lowest November average monthly extent in the satellite record, sea ice extent is near-average in all regions except the Weddell Sea, where it’s at a record low. Sea ice around the Weddell polynya (aka Maud Rise polynya, depicted by the shape toward the top) has melted, leaving open ocean.

Ant1

Credit: NSIDC

Ant2

Credit: NSIDC

Glaciers & Ice Shelves

eat

Part of the East Antarctica ice sheet                              Credit: Michael Hambrey/Glaciers Online

The East Antarctic Ice Sheet may not be as stable as previously thought says this study. In the past, it has undergone dramatic retreats, and scientists now feel that, as the planet warms, it may provide a significant contribution to sea level rise.

Another study showed that even small losses of ice at the edges of ice sheets can accelerate the movement of glaciers grounded on rocks. Lead-author Ronja Reese (Potsdam Institute for Climate Impact Research) says:

“Destabilizing the floating ice in some areas sends a signal as far as 900 kilometers across the largest ice shelf in Antarctica… It does so with an amazing speed, similar to the speed with which shocks from an earthquake travel.”

Icebergs

On Thursday, the US Coast Guard International Ice Patrol said around 1,008 icebergs drifted into shipping lanes in the North Atlantic, up from 687 in 2016. This is the fourth consecutive “extreme” ice season. Retreat of the Greenland ice sheet/calving of icebergs, plus increased storminess that broke up sea ice, setting icebergs free to drift, is responsible, according to Ice Patrol Commander Kristen Serumgard.

We have a great new graphic showing the drift of massive iceberg A-68, which calved from the Larsen C ice shelf (Antarctica) back in July.

Credit: Dave Mosher

Scientists are on their way to study the effects on lifeforms that dwelled in darkness under the ice sheet now they’ve been exposed to the light by this dramatic calving event.

Starving Polar Bears, Giant Penguins, & the GOT Ice Wall

Back to that viral “starving polar bear” video that everyone may have gotten wrong. As I discussed last week, some experts, such as polar bear biologist Andrew Derocher and Arctic wildlife biologist Jeff Higdon, believe that bear may have not been starving and may in fact have been injured or diseased. Nunavut bear monitor Leo Ikakhik agrees the bear was likely sick or injured.

(In following Derocher and Higdon and this polar bear story, I’ve discovered that polar bear Twitter is not an entirely pleasant place for polar bear scientists—it’s somewhat of a hangout for a certain breed of climate change deniers, who frequently cite dubious sources.)

While that polar bear may have died due to other causes, the fact remains that polar bears—alongside other sea ice-dependent species—will face increasing challenges as sea ice continues to decline.

This study by Deorcher et al states:

“Anthropogenic global warming is occurring more rapidly in the Arctic than elsewhere, and has already caused significant negative effects on sea ice-dependent species such as polar bears. Although observed effects have thus far been gradual, the large amount of annual variation in the climate system may cause habitat changes in individual years that exceed the long-term trend. Such years may be below critical thresholds necessary for feeding and result in unprecedented reductions in survival, reproduction, and abundance in some populations.”

Why the media keeps getting Arctic news wrong.

giant

Credit: Gerald Mayr—AP

On a New Zealand beach, scientists have found fossil evidence of a 5’8″ penguin that lived 60 million years ago.

iceall

And that ice wall in Game of Thrones? Impossible without magic, says glaciologist Martin Truffer (University of Alaska Fairbanks).

As always, I am not a scientist, just a writer/illustrator and science communicator passionately in love with sea ice. I welcome input and corrections by polar scientists as I learn more about this remarkable and vital part of our planet and bring this knowledge to a wider audience. 

 

 

In the Belly of the Southern Ocean

IMG_9004 C

Copyright © Marlo Garsnworthy

“Below 40 degrees south there is no law; below 50 degrees south there is no God.”

—An old sailors’ saying

 

Driven by strong westerly winds and unhindered by land to slow its flow, the frigid Southern Ocean races around the coldest, windiest, driest, and most remote landmass on Earth—the vast polar continent of Antarctica.

Capture

Via Google Earth

Between the latitudes of 40 and 50 degrees south is the realm of the “Roaring Forties. ” These powerful winds, first named by sailors who used them for fast passage around the globe, have long been known for their ferocious storms and treacherous seas.

FullSizeRender

Credit: Luke Zeller

South of 50 and 60 degrees respectively are the “Furious Fifties” and “Screaming Sixties,” where these conditions are even stronger.

DSC_0515

Copyright © Marlo Garnsworthy  

Here, a ship’s crew must not only battle waves that can be as high as multi-story buildings but watch vigilantly for icebergs and find safe routes through thick, ever-shifting sea ice that freezes and recedes with the seasons.

DSC_0473

Copyright © Marlo Garnsworthy

Here, even a well-quipped icebreaker—a ship especially designed to navigate ice-covered waters—can be incapacitated far from land or help. And it is here between 67 degrees and 54 degrees south—in the belly of the Screaming Sixties and Furious Fifties—that I spent six weeks aboard an icebreaker and research vessel.

To be continued… 

My journey aboard the RVIB Nathaniel B. Palmer, with researchers from the University of Rhode Island’s Graduate School of Oceanography, the Marine Science Institute of UCSB, and the University of Otago, who studied aspects of diatom production, is the subject of the book I’m currently writing. This journey was funded by the National Science Foundation’s United States Antarctic Program. Special thanks to Dr. Rebecca Robinson for this extraordinary opportunity.